Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available June 6, 2026
-
Consider a principal who wants to search through a space of stochastic solutions for one maximizing their utility. If the principal cannot conduct this search on their own, they may instead delegate this problem to an agent with distinct and potentially misaligned utilities. This is called delegated search, and the principal in such problems faces a mechanism design problem in which they must incentivize the agent to find and propose a solution maximizing the principal's expected utility. Following prior work in this area, we consider mechanisms without payments and aim to achieve a multiplicative approximation of the principal's utility when they solve the problem without delegation. In this work, we investigate a natural and recently studied generalization of this model to multiple agents and find nearly tight bounds on the principal's approximation as the number of agents increases. As one might expect, this approximation approaches 1 with increasing numbers of agents, but, somewhat surprisingly, we show that this is largely not due to direct competition among agents.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Free, publicly-accessible full text available February 27, 2026
-
Free, publicly-accessible full text available December 15, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
The quintessential learning algorithm of empirical risk minimization (ERM) is known to fail in various settings for which uniform convergence does not characterize learning. Relatedly, the practice of machine learning is rife with considerably richer algorithmic techniques, perhaps the most notable of which is regularization. Nevertheless, no such technique or principle has broken away from the pack to characterize optimal learning in these more general settings. The purpose of this work is to precisely characterize the role of regularization in perhaps the simplest setting for which ERM fails: multiclass learning with arbitrary label sets. Using one-inclusion graphs (OIGs), we exhibit optimal learning algorithms that dovetail with tried-and-true algorithmic principles: Occam’s Razor as embodied by structural risk minimization (SRM), the principle of maximum entropy, and Bayesian inference. We also extract from OIGs a combinatorial sequence we term the Hall complexity, which is the first to characterize a problem’s transductive error rate exactly. Lastly, we introduce a generalization of OIGs and the transductive learning setting to the agnostic case, where we show that optimal orientations of Hamming graphs – judged using nodes’ outdegrees minus a system of node-dependent credits – characterize optimal learners exactly. We demonstrate that an agnostic version of the Hall complexity again characterizes error rates exactly, and exhibit an optimal learner using maximum entropy programs.more » « less
An official website of the United States government

Full Text Available